
A Distributed Web-based Naming System for Smart
Buildings

Gérôme Bovet∗‡ and Jean Hennebert†‡
∗LTCI

Institut Mines-Telecom, Telecom ParisTech, 46 Rue Barrault, 75013 Paris, France
Email: gerome.bovet@telecom-paristech.fr

†DIUF
University of Fribourg, Bd de Pérolles 90, 1700 Fribourg, Switzerland

Email: jean.hennebert@unifr.ch
‡iCoSys

University of Applied Sciences Western Switzerland, Bd de Pérolles 80, 1700 Fribourg, Switzerland

Abstract—Nowadays, pervasive application scenarios relying
on sensor networks are gaining momentum. The field of smart
buildings is a promising playground where the use of sensors
allows a reduction of the overall energy consumption. Most of
current applications are using the classical DNS which is not
suited for the Internet-of-Things because of requiring humans
to get it working. From another perspective, Web technologies
are pushing in sensor networks following the Web-of-Things
paradigm advocating to use RESTful APIs for manipulating
resources representing device capabilities. Being aware of these
two observations, we propose to build on top of Web technologies
leading to a novel naming system that is entirely autonomous. In
this work, we describe the architecture supporting what can be
called an autonomous Web-oriented naming system. As proof
of concept, we simulate a rather large building and compare the
behaviour of our approach to the legacy DNS and Multicast DNS
(mDNS).

I. INTRODUCTION

In the 21st century, rising energy costs and the impact
of natural disasters due to climate change have made people
realize that it is now necessary to better manage our energy
consumption. In this context, buildings represent the main
contributor by consuming up to 40% of the overall energy,
which is even greater than industry or transportation [1].
Based on this observation, it is obvious that buildings account
for a large energy saving potential. Building management
systems (BMS) aim at reducing the energy consumption by
optimizing the management of Heating, Ventilation and Air
conditioning (HVAC), as well as lighting and other appli-
ances. Following this direction, novel BMS approaches tend
to migrate from a centralized management to a distributed one
following the Internet-of-Things (IoT) paradigm, where agents
shall coordinate between themselves [2]. In the foreseeable
future, building management systems relying on a tremendous
variety of sensors and actuators will democratize in private
households, as for example the sen.se Mother and Cookies [3].
However, those systems will only be accepted by common
people if they require no special IT knowledge, being easy
installable in a plug-and-play manner.

Targeting a distributed and autonomous building manage-
ment requires the establishment of an underlying compatible
architecture, especially in IoT scenarios. Today’s legacy net-

work infrastructures rely on the DNS [4], which aim is to map
IP addresses to human readable names. Although the DNS
has been largely sufficient until now, its suffers from being a
heavy infrastructure only deployable and manageable by expert
people, that weakly supports the mobility and dynamism of
everyday objects. This is especially true for smart buildings
applications where pervasive devices can appear and disappear,
as well as move inside the building. Additionally, the legacy
DNS has to be set up before deploying those devices, which
is preventing a plug-and-play installation. Although some
distributed naming systems like mDNS [5] exist, they are not
specifically tailored for the IoT nor for specific constraints of
smart buildings. We believe that the future naming system for
the IoT should offer solutions to following issues: scalability,
autonomy and fault tolerance, resource orientation, pervasive-
ness, backward compatibility and efficiency.

In this paper, we present the design and architecture of a
novel naming system at the convergence of the aforementioned
requirements. We base our design following the principles
induced by the Web-of-Things (WoT) paradigm [6] that is
gaining momentum in sensor network applications. Everyday
objects as well as sensors are exposing their capabilities in
form of RESTful APIs inheriting and extending key proper-
ties of the Web, such as a strong interaction style allowing
communications between various hard-/software platforms, a
scalable architecture supporting billions of resources, as well
as a total independence to network topology and medium.
We now seek to exploit those benefits to provide a naming
system that is loosely-coupled, and making an intensive use
of Web technologies thus allowing a transparent integration
in future Web-based building management systems. Since the
purpose of the paper is to present our view of an autonomous
naming architecture for Web-of-Things oriented networks, we
will focus on its design guidelines and inherent concepts, rather
than on its performance.

The remainder of this paper is organized as follows.
Next section summarizes some related work. In Section III
we provide a list of requirements that a naming system for
smart buildings must fulfil. Section IV describes our proposed
autonomous Web-based naming architecture, and details the
zone decomposition that hierarchically organizes the name
space. Its decomposition in RESTful APIs is showed in

ha
l-0

10
22

86
1,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4

Author manuscript, published in "Third IEEE workshop on the IoT: Smart Objects and Services, Sydney : Australia (2014)"

http://hal.archives-ouvertes.fr/hal-01022861
http://hal.archives-ouvertes.fr


Section V. The backward compatibility with the legacy DNS is
presented in Section VI. In Section VII, we test our architecture
by performing simulations with a prototype implementation.
Finally, Section VIII concludes our paper and provides insights
on further research.

II. RELATED WORK

The traditional IP-based Domain Name System (DNS)
which has been a key enabler of the Web is today often
criticized, although numerous enhancements have been pro-
posed to face its shortcomings. One of these enhancements is
the Multicast DNS [5], widespread in IoT applications, which
fully distributes name servers among the network, relying on a
multicast group. Contrary to the DNS which is hierarchically
organized in zones, the mDNS works with a flat name space
where each server can hold records for any domain. While the
approach is fully distributed, it does not ensure that there is
no single point of failure as records may not be duplicated
on other servers. Additionally, it requires a strong mechanism
for detecting record conflicts. In the same way as for mDNS,
MOSS [7] proposes a distributed architecture using a flat
naming that has to be defined prior to deployment as each
domain is manually associated with a predefined multicast
group. Before sending a query, the resolver checks its table
of domains to retrieve the associated multicast group. This
has the advantage to only target servers that have entries for
the requested domain. However, MOSS makes the assumption
that every device is acting as a resolver and server for its own
entry, which is possibly not feasible on constrained devices.
Meanwhile this eliminates the need for a replication system
as a name entry is managed by its own device. If a resolver
does not receive a response means that the concerned device
is currently down.

Partially distributed systems are like the classical DNS
approach decomposing the name space into zones regroup-
ing contiguous domains. Hosts can register and update their
naming information (name and IP address) at the server
managing their zone. This decomposition allows each zone
working separately from each other in case of a link break
between them. This concept is applied in [8] to a military
network where the zones are decomposed according to the
units of action of the troop. A master and a slave for each
zone are synchronizing over DNS zone transfers for ensuring
replication. An hybrid naming systems taking benefit of fully
and partially distributed named is proposed in [9]. The system
automatically adapts its working according to the underlying
ad hoc network topology by choosing to work either with
multicast groups in fully distributed mode or with unicast
requests sent to zone servers.

Peer-to-peer (P2P) networks are gaining momentum in ar-
eas related to naming. Virtual overlay networks of DNS servers
are composed over a structured or unstructured P2P [10].
Structured P2P approaches offer the advantage to have a
predictable performance due to the fact that the overlay topol-
ogy and the placement of the resources is controlled. The
classical flat P2P has since been extended to hierarchical P2P
where super-peers are elected among peers to form the overlay
network [11]. Each super-peer has the capacity to regulate how
many ordinary peers can connect to them before promoting
additional super-peers. This concept is reused in our approach

as it allows to dynamically react to load variations and to
restrict the number of name servers to the minimum, thus
reducing the need for synchronization.

III. NAMING REQUIREMENTS IN SMART BUILDINGS

The context of smart buildings is an interesting playground
for IoT applications. The field of building automation is
currently moving towards integrating some key concepts of
the IoT, especially with Wireless Sensor Networks (WSN).
New pervasive IP-enabled devices are acting as sensors or
actuators. While the IoT proposes several technologies for
allowing devices talking to each other from a network point of
view, it lacks of standardization for the upper layers, especially
regarding the naming. In this section we analyze the different
issues that a naming system for smart buildings must meet.

1) Scalability: Office and factory buildings can be en-
dowed with thousands of devices. If we push our
vision further looking at future smart cities, millions
of devices will sense and interact with the city. The
underlying naming system must thereby be highly
scalable and support an unlimited number of devices.
In addition, the number of devices should only little
affect the performance of the system.

2) Autonomy and fault tolerance: One major draw-
back of the DNS is that it has to be installed
and maintained by professional people with expert
knowledge. This drawback is one of the reason why
it can not be considered for IoT applications. An
automation system will only be accepted by users
if their contribution for installation is reduced to the
minimum, targeting a plug-and-play approach. This
means that users should not have to set up a DNS
server and zone delegations as part of the installation.
The naming system should configure itself and being
autonomous regarding the variations in size of the
network. Additionally, the naming system should be
insensitive to single points of failure, meaning that
the lost of servers is automatically compensated.

3) Resource orientation: We can identify a clear trend
of pushing RESTful APIs down to field devices in
smart homes and smart buildings [12]. According to
the Web-of-Things, each device exposes its capabili-
ties as REST services in form of Web resources, thus
standardizing the application layer. Existing classical
building automation networks as KNX and EnOcean
working with specific stacks have already been made
compatible with the WoT by mapping their devices
to RESTful APIs [13] [14]. By following this trend,
there is only a small step from considering a Web-
based naming system, exposing name entries as Web
resources.

4) Pervasiveness: With the advances made in pervasive
computing, sensing devices are becoming smaller
and affordable. The limited available computational
power limits the tasks that can be run as well as the
protocols that can be understood by those devices.
As consequence of this, the naming system has to be
lightweight and compatible with constrained devices
having only little memory and CPU.

5) Backward compatibility: We target our naming
system to be compatible with the legacy DNS. As

ha
l-0

10
22

86
1,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



the legacy DNS is on the heart of the Internet and
the current Web, dissociating our architecture from it
would limit the interaction with IoT devices as data
and automation algorithms are traditionally hosted on
dedicated computer or in the cloud. Our proposed
smart building naming system should therefore allow
a transparent compatibility of requests issued from
the legacy DNS or from the smart building’s naming
system.

6) Efficiency: Finally, working in the context of smart
buildings targeting energy savings, the underlying
”smart” system has to be itself optimized in terms
of energy consumption. The naming system should
therefore limit the number of messages it needs for
synchronization and data replication.

IV. THE DISTRIBUTED WEB-BASED NAMING SYSTEM
ARCHITECTURE

In this section we illustrate the architecture of our au-
tonomous Web-oriented naming system for smart buildings.
The design choices and underlying technologies have been
selected according to the aforementioned requirements. It
basically relies on the concepts of partially distributed naming
and P2P where we dynamically create zones that will be man-
aged by some sort of super-peers. In our vision, sensors and
everyday objects having enough computational capacities can
run server agents, which avoids the need for dedicated name
servers. Our reference implementation, although not necessary
finding the best solution ensures finding an acceptable one
within a defined time.

A. Entities

In the same way as for the legacy DNS, the name space
is divided in domains and zones. Domains represent a logical
entity of the name tree, and especially in our case a physical
part of the building. We motivate to use a name tree according
to the buildings floor plan because of the logical structure
that can be found in buildings (i.e. building ->floor ->room
->device) matching with humans representation, as illustrated
in Figure 1.

Those domains can be grouped in zones forming a virtual
entity of contiguous parts of the domain tree, that are usually
managed by a master and a slave server residing in the
zone. In our approach a zone represents the grouping of near
distance rooms. We here rely on the functioning of distributed
automation systems where rooms form independent entities
that can run disconnected from each other. This allows to
ensure that the automation of a room will continue working
even if the backbone network of the building suffers from
disruptions.

Server agents have the possibility to act as resolver and to
be promoted either to master or slave of a zone in which they
reside. Master servers differ from slaves in that they can decide
whenever their own zone should be partitioned or a child zone
should be merged with its own. Slave servers are continuously
synchronized with their respective master in order to ensure
an up-to-date replication of data.

company

building2
building1 building3

floor2

floor1 floor3

room1 room3

room2

Device1 Device2

Device1

Device1

acme.com

office.acme.com

00.parking.acme.com

room348.05.factory.acme.com

Fig. 1. Naming tree decomposition according to the buildings room plans
and composition of zones

B. Zone Composition Strategy

The number of zones influences the availability and scala-
bility of the network. Having more zones increases the need for
higher bandwidth for supporting the synchronization between
those zones and the replication of data between master and
slave servers. However, this approach allows to decouple
rooms. Fewer zones will allow to lessen the synchronization
between parent and children zones, and require less servers for
managing the name space. This choice is left to the developer.
Meanwhile, our algorithm tries reducing the number of zones
in order to minimize network traffic. The partitioning of the
tree and thus the number of zones depends on several variables
which are: the maximum number of name entries for a zone
and the number of desired slave servers. While a brute force
approach would result in having the best decomposition of a
tree, its CPU and memory requirements would be too high for
constrained devices. We here explain the most important steps
of our algorithm that are also depicted in Figure 2:

1) In the first step, we ensure that all leaves of the
tree have at least two servers. The algorithm will
recursively merge leaves with there parent until each
zone holds at least two servers.

2) Once each leaf has the required number of servers,
the algorithm will merge non-leaf zones with there
children so that each one holds at least two servers
and does not exceed the maximum number of entries.
We minimize the number of zones by trying every
possibility to merge non-leaves with there children.
At the end we obtain a new tree where each zone
will be managed separately.

This process of repartitioning a zone is performed in two
distinct cases:

• A zone exceeds the maximum number of entries it
can handle. The master of the zone will partition its
own zone and delegate the management of new ones
to other servers. This operation is resulting in at least

ha
l-0

10
22

86
1,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



office.acme.com

floor0

S: 1

E: 5

floor1

S: 2

E: 7

room1

S: 0

E: 13

room5

S: 2

E: 20

room9

S: 4

E: 17

room17

S: 0

E: 22

room3

S: 2

E: 9

room5

S: 2

E: 17

room13

S: 0

E: 12

room22

S: 3

E: 18

office.acme.com

floor0

room1

room17

room9

S: 5

E: 57

floor1

room13

room3

room5

S: 6

E: 45

room5

S: 2

E: 20

room22

S: 3

E: 18

Base tree

office.acme.com

floor0

room1

room17

S: 1

E: 40

floor1

room13

S: 2

E: 19

room5

S: 2

E: 20

room9

S: 4

E: 17

room3

S: 2

E: 9

room5

S: 2

E: 17

room22

S: 3

E: 18

Ensure leaves have two servers

Minimize the number of zones 

Min servers: 2

Max entries: 60

Fig. 2. Partitioning of a name tree with following constraints: minimum 2
servers and maximum 60 entries per zone.

one new zone.

• A zone can be merged with one of its children when
the sum of entries of both zones is lower than the
maximum it can handle. In this scenario the parent
will repatriate the child’s zone and merge it with its
own. This operation is resulting in one zone less.

C. Name Server Selection Strategy

As indicated above, the name servers are not manually
configured like it is the case for the legacy DNS, but are
elected among server agents. This largely contributes to the
autonomy of the naming system as there is no need for a
human in the loop. Each zone is managed autonomously and
has to ensure that it has at least one master and one slave
name server, thus ensuring replication. Server agents can either
promote themselves to name servers or be designated by others
depending on certain conditions. A server agent always starts
up with no specific role. His first step is to inquire for a name
server managing the domain it resides in. If it receives no
response, it will then promote itself as master for his domain.

There are also other ways for a server agent to become a
name server:

• The server agent is promoted to a slave of the zone
by the master. This ensures that the zone has always
at least one slave if possible.

• A slave server promotes itself as master as soon as it
detects that the master is no more responding and will

then designate a new slave. This ensures that there is
always a server that has the possibility to repartition
the zone with at least one slave for replication.

• After the partitioning of a zone, new masters will
be designated for the resulting new zones. Each new
master has then the responsibility for designating
slaves.

The criteria when promoting server agents to slave name
servers can influence the overall performance of the naming
system, especially for ad-hoc wireless networks. Two main
criteria are relevant when selecting new servers: the closeness
to the master for slaves and the number of servers of the
domain in which they reside for new masters. For the first
one, the locations of the master and the slave will influence
the costs for replication and the ability to overcome connection
breaks. While close located master and slaves (numbers of
vertices in the name tree) allows to minimize replication costs,
it induces some potential difficulties if the rest of the zone
gets disconnected from the servers. Meanwhile we recommend
choosing a slave server that is the closest to the master server as
we want to reduce the communication costs. Another argument
advocating to choose servers based on their closeness is that
if one part of the zone is disconnected from the servers,
other server agents will temporarily promote themselves as
name server until the connection is recovered. Regarding
the selection of new masters after partitioning, we put more
importance on selecting a name server located in a domain
having the highest number of server agents. We motivate this
choice in order to comply with the aforementioned criteria, as
there will be more probability to select a slave residing in the
same domain and thus optimizing the replication costs.

D. Data Replication Strategy

Data replication on at least one slave is mandatory for
avoiding the single point of failure in case of the master
failing or disconnecting. Data replication can be seen from
several points of view. In the legacy DNS, the zones are
periodically exchanged which creates a delta if the master
fails. This delta can be reduced by replicating zones on a
very regular basis, although increasing communication costs.
In mDNS, data replication is ensured through the multicast
messages that are processed by each host and added to their
knowledge. This has the advantage to avoid full replication
of zones between hosts. However, some information could be
lost if a host misses a multicast message, and would result in
a lost of knowledge.

In our architecture we aim at combining the strengths of
both approaches. Master name servers will periodically fully
replicate zones on their slaves, depending on a configurable
value which can be time based or a number of updates.
In order to lessen as much as possible full replications and
the related communications costs, we propose to associate a
different multicast group to each zone. This multicast group
is used by hosts for updating records (i.e. announcement,
update and deletion) and making lookups instead of having
an unicast communication with the master. Following such
an approach allows to bring two key foundations of our
architecture regarding data replication and autonomy. First,
one multicast message will have as effect that both the master

ha
l-0

10
22

86
1,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



and slave will update their records simultaneously, thereby
reducing full replications. Secondly and not less important,
using a multicast group for lookups and record updates is
decoupling the zone’s management from its physical name
servers. Indeed hosts have no clue with which physical server
they exchange as they communicate over multicast. In the case
of a master name server failing and being replaced by a slave
will have no influence on the hosts as they do not communicate
directly with servers.

V. THE WEB-ORIENTED NAMING SYSTEM

In this section, we present our naming system relying on
common Web technologies for managing the naming system.
As previously indicated, our naming system has to be easily
integrable in existing Web architectures. This is the reason
why our protocol is based on RESTful APIs. In order to
limit the amount of exchanged data, we opted for CoAP [15]
being much more lightweight than HTTP. More specifically,
we rely on the CoAP group communication for proposing
APIs working over multicast [16]. Regarding the payload
format, JSON outperforms XML because of requiring less
memory, processing time and having less overload [17]. In
addition, JSON has the advantage to be natively supported
by all modern Web browsers. Following the paradigm of the
Web-of-Things, we represent domains, zones and name entries
as Web resources offering CRUD (Create, Read, Update and
Delete) interaction.

Resource PurposeMethod

Management interface: predefined multicast address

Zone interface: zone multicast address

Server interface: unicast server address

GET /zone/{domain} Discover which zone manages this 
domain (full qualified name)

GET /host/{host} Lookup the IP address of this host (full 
qualified name)

PUT /host/{host} Add or update the IP address of this 
host (full qualified name)

DELETE /host/{host} Delete the entry of this host (full qualified 
name)

PUT /server/{id} Register a server agent

DELETE /server/{id} Unregister a server agent

PUT /zone/{id}/size Child zone notifies about its number of 
entries

PUT /zone/{id}/group Parent zone informs about its new 
multicast zone group

DELETE /zone/{id} Parent zone wants to merge this zone 
with its own one

PUT /zone/{id}/{role} Designate the server master or slave or 
perform a full replication

DELETE /zone/{id}/{role} Inform a slave that it is no more a name 
server

Fig. 3. APIs of the Web-oriented naming system (without payload and
response information)

We decompose the RESTful API in three distinct interfaces
depending on the scope of those, as visible in Figure 3.
The Management interface serves as entry point where server
agents and hosts can discover which zone manages a specific
domain. Once knowing the zone’s multicast group, the com-
munication is switched to the Zone interface where hosts can
announce themselves and perform lookups. Finally, the unicast

Server interface offers services for replicating zones as well as
for designating new master and slave name servers. Because
of space constraints the JSON payloads are not showed in this
paper.

The process of a lookup is decomposed in two parts. First,
the resolver needs to discover which zone is managing the
sought domain over the Management interface. The obtained
response can then be cached by the resolver in order to skip this
step for future requests. The resolver then performs a lookup
of the host over the Zone interface and receives the response
via unicast by the master of the zone. To summarize, at most
two multicast messages are required to obtain the IP address of
a host, which is less than the legacy DNS if the preconfigured
server is not authoritative for the sought domain.

VI. ENSURING COMPATIBILITY WITH THE LEGACY DNS

Ensuring a transparent compatibility with the legacy DNS
is a constraint that can not be overstepped. However, our
proposed autonomous naming system relying on Web tech-
nologies is naturally not compatible with the DNS. This can
be bypassed by introducing a gateway that will interconnect
both worlds. From the classic Internet point of view, it will
act as a standard DNS server being authoritative for the
domains that are managed by our naming system. It will
transparently forward requests to our naming system using the
Management and Zone interfaces, sending back the response
over the standard DNS protocol. On the other side the gateway
will act as master server for domains that are not managed
by our naming system, forwarding the queries to legacy DNS
servers. Both modes are illustrated in Figure 4.

Authority for the 
domain managed by 
the distributed naming

Simulate it is master for 
non-distributed 
domains

Internet

Building network

Delegate zone of 
distributed domain 
to gateway

Legacy DNS to distributed naming

Distributed naming to legacy DNS

Fig. 4. Flow of messages between the legacy DNS and distributed naming

VII. EVALUATION

In order to evaluate our Web-based naming system, we
developed the server and client agents in Java. We chose as

ha
l-0

10
22

86
1,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4



simulation playground three buildings of the College of Engi-
neering in Fribourg, Switzerland. The buildings are composed
of office, meeting and class rooms spread over five floors
per building, giving a total of 180 rooms. Our simulation
model randomly makes hosts and servers appear and disappear
according to predefined ranges for each room type. Each
repeatable simulation generates a total of 5000 operations
which are of following type: add host, remove host, add
server agent and remove server agent. For each simulation, we
varied the maximum size of zones and observed the number
of packets also as the data size (UDP + CoAP + payload)
due to data replication. From the Figure 5 we can see that
the number of packets and the amount of data are closely
related. However, defining small zones will have as effect
a more important number of zones and thus a substantial
amount of synchronization data. However, both metrics tend
to become steady as soon as the zone size can cover at least
two rooms, which is approximately 45 hosts in our simulation.
More generally we observe that in our situation 5.6kB in
average are needed for one replication, while the total number
of exchanged data is 608kB in the best case.

-‐100	  

100	  

300	  

500	  

700	  

900	  

1100	  

0	  

1000	  

2000	  

3000	  

4000	  

5000	  

6000	  

20	   30	   40	   50	   60	   70	   80	   90	   100	  

N
um

be
r	  o

f	  p
ac
ke
ts
	  

Da
ta
	  [k

B]
	  

Max	  zone	  size	  

Replica;on	  of	  zones	  
Data	   Packets	  

Fig. 5. Flow of messages between the legacy DNS and distributed naming

Compared to the legacy DNS and mDNS, our naming sys-
tem outperforms in terms of number of packets and exchanged
data, thus being more efficient. We performed the same simu-
lations using legacy DNS servers as proposed in [8] and using
mDNS [5]. Both approaches gave us a higher value of total
exchanged data for replication, namely 1220kB (+100%) for
DNS and 1040kB (+71%) for mDNS. This is explained by
the DNS protocol itself having a relative consequent overhead
compared to the combination of REST and JSON.

VIII. CONCLUSION AND FUTURE WORKS

It is likely that Web technologies will gain more importance
in pervasive application scenarios and especially in smart
buildings. They indeed allow to standardize from an appli-
cation layer point of view the interaction mechanism between
various devices. The underlying naming system can largely
benefit from taking a Web approach representing domains,
zones and host entries as Web resources thus removing the
need for constrained devices implementing the DNS protocol.
Even more important, naming systems must now evolve to self-
organizing services in contrast with the legacy DNS requiring
professionals throughout its operation, therefore preventing a
deployment in private households.

In this paper, we showed our vision of an autonomous and
Web-oriented naming system applied to sensor networks with
a particular emphasis on smart buildings. Unlike mDNS, we
keep the hierarchical organization of the legacy DNS while
taking part of multicast for reducing the amount of data
exchanged during replications. Our naming system requiring
no human in the loop for deployment or maintenance makes a
step towards fully plug-and-play sensor networks, which will
largely contribute to their acceptance by people without IT
knowledge. Future developments intend to even more reduce
the replication data by compressing the JSON payload by using
a shared schema. The security aspect is also an important
concern that has to be solved in the near future.

ACKNOWLEDGEMENT

The authors are grateful to the Swiss Hasler Foundation and
to the RCSO grants from the HES-SO financing our research
in this exciting area of smart buildings.

REFERENCES

[1] L. Perez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy
consumption information,” Energy and Buildings, vol. 40, pp. 394–398,
2008.

[2] S. Abras, S. Ploix, and S. Pesty, “A multi-agent home automation system
for power management,” Informatics in Control Automation, 2008.

[3] “sen.se mother and cookies,” https://sen.se/.
[4] P. Mockapetris, “Domain names - implementation and

specifications,” RFC 1035, 1987. [Online]. Available:
http://www.ietf.org/rfc/rfc1035.txt

[5] S. Cheshire and M. Krochmal, “Multicast dns,” RFC 6762, 2013.
[Online]. Available: http://tools.ietf.org/html/rfc6762

[6] D. Guinard, “A web of things application architecture - integrating the
real world into the web,” Ph.D. dissertation, ETHZ, 2011.

[7] Y. Gottlieb, R. Chadha, and K. Cheng, “Moss: Gathering names in net-
works of mobile nodes,” in Proc. of the 2007 Military Communications
Conference (MILCOM 2007)), 2007.

[8] R. Morera and A. McAuley, “Adapting dns to danamic ad hoc net-
works,” in Proc. of the 2005 Military Communications Conference
(MILCOM 2005)), 2005.

[9] M. Nazeeruddin, G. Parr, and B. Scotney, “An efficient and robust name
resolution protocol for dynamic manets,” Ad Hoc Networks, 2010.

[10] L. Huang, “Virgo p2p based distributed dns framework for ipv6
network,” in Proc. of the 4th International Conference on Networked
Computing and Advanced Information Management, 2008.

[11] R. Fahra and A. Leon-Garcia, “Peer-to-peer naming architecture for in-
tegrated wireline/wireless networks,” in Proc. of the IEEE GLOBECOM
2007, 2007.

[12] A. Kamilaris and V. T. andA. Pitsillides, “The smart home meets
the web of things,” International Journal of Ad Hoc and Ubiquitous
Computing, vol. 7, pp. 145–154, 2010.

[13] G. Bovet and J. Hennebert, “A web-of-things gateway for knx net-
works,” in Proc. of the European Conference on Smart Objects, Systems
and Technologies (Smart SysTech 2013), 2013.

[14] ——, “Offering web-of-things connectivity to building networks,” in
Proc. of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp 2013), 2013.

[15] Z. Shelby, K. Hartke, and C. Bormann, “Constrained application
protocol (coap),” draft-ietf-core-coap-18, 2013. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-core-coap-18

[16] A. Rahman and E. Dijk, “Group communication for
coap,” draft-ietf-core-groupcomm-18, 2013. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-core-groupcomm-18

[17] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison
of json and xml data interchange formats: A case study,” CAINE, 2009.

ha
l-0

10
22

86
1,

 v
er

si
on

 1
 - 

11
 J

ul
 2

01
4


